
JOl;RNAL OF APPROXIMATION THEORY 41, 64-86 (1984)

An Approach to Data Parametrization in

Parametric Cubic Spline Interpolation Problems

SAMUEL P. MARIN

Mathematics Department, General Motors Research Laboratories.
Warren, Michigan 48090-9055. U.SA.

Communicated by Oved Shisha

Received AprIl. 25. 1983

A new approach to the problem of parametrizing data in parametric cubic spline

interpolation problems is discussed. Parametrizations 0 = ti) < t 1 < ... < t, = I of

K-dimensional data IZ;I~ n' z; = (z: ..... zn are chosen hy minimizing ~~ 1 (I )

I'i, (d'f//dt')' dt. where fl(t) is the natural cubic spline with breakpoints t".1
1
..... (,

satisfying f/(I;) = z;. i = O..... :Y. and (1;.1 ~ I ..... K. are positive numbers. This

approach yields parametrizations which. by complementing the well-known

smoothest interpolation property of natural cubic splines. leads to smoother

component functions. The improvements arc. in part. evidenced by reduced position

overshoots and lower second derivatives. A closed form solution of the problem is

derived for one-dimensional data. In higher dimensions the gradient projection

method is used to obtain approximate numerical solutions. Geometric curve fitting

problems and an example involving the design of a trajectory for a robot

manipulator arc used to illustrate the method.

I. INTRODUCTION

The purpose of this paper is to describe a new approach to the problem of
parametrizing data in parametric cubic spline interpolation problems. We
begin by introducing a constrained minimization problem whose solution
yields the required data parametrization.

For K-dimensional data lzil'~co' Zi = (z} ,... , zf), and a partition 0= 10 <
t I < ... < tv = I of [0, 1 I, parametric interpolation within the space
So(lo' lj , ... , IN) of natural cubic splines is accomplished by performing
univariate interpolation K times. The result is a parametric curve passing
through the given data, described by a vector valued function 6(1) =
(f)I(I), ... , f)K(t)) whose components f)/(I), I = I,... , K, are in So(to'"'' 1\) and
satisfy f)/(ti)=zi, i=O, .... N. If we fix the data jzJ~ 0 and define
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(I)

hi = t l - t l -1' i = 1,... , N, then the following function G of the mesh spacing
vector h = (hI"'" hN? is a weighted measure of component smoothness

K 1 1 (dZe' 2

G(h) = L z-f -dz ) dt.
1= [a l 0 t

We delay specifying the weights a p 1= 1'00" K, in (1) until Section 3. At this
point we merely assume that they are positive. Our objective in
parametrizing the points {zrl7=o will be to

where

minimize G(h),
hEB

(2)

(3)

The desired parametrization tt, tt,...,tt is then induced by a minimizing
mesh spacing h* = (ht, ... , h.~)T according to

tt = 0, i= 1,... ,N. (4 )

Remark (Existence of Solutions). We assume throughout that the data
satsify Z I * Z I +I' i = 0,... , N - 1. This requirement implies that G(h) becomes
infinite if any component of h vanishes and, coupled with standard
continuity and compactness arguments, gives the existence of a minimizing
mesh spacing vector with hi> 0, i = 1,... , N.

There are several issues, in addition to the classical notion of smoothness
(see II]) which are addressed by parametrizing data {zrl7=o in this way. We
summarize these:

(i) In geometric applications (K = 2 or 3), it is often desired that the
cubic spline interpolating curve {O(t) It E [0, I]} conform in shape to the
interpolating polygon {~(t) It E 10, I]}, where ~(t) is the piecewise linear
interpolant of the data. The smooth curve will conform to the associated
polygon if the difference e(t) == OCt) - ~(t) is small. For each component
el(t) = el(t) - ¢l(t) of e(t) we have

l= I,...,K.

Thus, G(h) defined by (I) may be interpreted as an upper bound on a
weighted HI-norm of e(t) and we anticipate that parametrizations which
minimize G will also provide interpolating curves OCt) which are closer to the
interpolating polygon.
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(5)to = 0,

(ii) Other applications for spline interpolation and approximation
techniques arise in the design of trajectories to be tracked in time by the axes
of robot manipulators [5-7 J. Here, when the parameter t is interpreted as a
time variable the objective function G(h) gives a weighted measure of
average acceleration. Minimizing this measure of average acceleration is
consistent with the goal of reducing machine wear.

Prior discussions of parametrization issues appear in 12-51. References
!2-4] deal with geometric applications while 151 treats a robot trajectory
problem.

The effects of various parametrizations on the properties of the resulting
space curves in parametric cubic spline interpolation problems are
considered in [2,3]. Here the basic conclusion is that the accumulated chord
length parametrization is satisfactory for most geometric applications. If d i'

i = 1,... , N, denotes the distance between points Zi _ I and Zi then the
normalized version of this standard parametrization is given by

l; = li_1 + di!( \" d;), i = 1,.... N.
j-I

It is generally found that when two- or three-dimensional data are
parametrized according to (5) the resulting parametric cubic spline inter
polant has "pleasing" shape. While this subjective assessment is based
mainly on experience, results of [2] establish a more concrete reason for
using (5). The chord length parametrization does not, however, address the
smoothness issue and when used in applications of robot trajectory design, it
merely ensures that approximate constant speed is maintained.

The method presented in [4] is a variational approach to a
parametrization issue in curve approximation and its intent is to choose a
parametrization which allows a given smooth geometric shape to be well
approximated by low order piecewise polynomials.

In [5], approximate minimum time trajectories for the axes of a robot
manipulator are determined by interpolating appropriately parametrized
robot axes data with cubic splines. The parametrization is determined by
minimizing total travel time under constraints on the cubic spline velocities,
accelerations, and third derivatives.

Our purpose is to consider problem (2) as an approach to the
parametrization issue. In Section 2 we examine problem (2) when K = I.
Although this case has limited practical application, it is important because
it can be solved explicitly and the results provide some insight in the higher
dimensional setting. Numerical solution of the problem in higher dimensions
is discussed in Section 3. Several sample problems are solved and the results
are compared to those obtained using the standard chord length
parametrization. Finally, results and conclusions are discussed in Section 4.
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2. SOLUTION WHEN K = 1

We show in this section that scalar ordinates Z0' Z I , ••• , ZN satisfying

67

.1; = Z; - Z; __ 1 * 0, i= 1,... ,N, (6)

admit a unique parametrization 0= tt < t1 <... < til = 1 (or the equivalent
mesh spacing h* = (hi, ..., hiJ)T) which minimizes n(B"(t»2 dt, where B(t) E
so(tt, ti, ..·, til), B(t;*)=z;, i=O, 1,...,N. We consider three cases classified
according to the behavior of the sequence of .1/s defined in (6) and begin by
summarizing the main results in each case.

1. .1;+ ,/.1; > 0, i = 1,... , N - I

The condition .1;+ 1/.1; >0, i = 1,..., N - 1, implies that the data
Z 0' z, ,... , Z N are strictly monotone. In this case the unique minimizing
parametrization is the one-dimensional version of normalized accumulated
chord length

tt = 0, i= 1,... ,N. (7)

With this choice, the interpolating natural cubic spline B(t) is a linear
polynomial on [0,1] and G(h*) = n(d2Bldt2)2 dt = 0.

II. .1;+,lL1i < 0, i= 1, ,N - 1

If .1 i + 11.1; < 0, i = 1, , N - 1 then each ordinate is either larger or smaller
than both of its neighbors (i.e., each ordinate is a relative extreme value). We
show in the following lemma that if 0= tt < ... < til = 1 is a minimizing
parametrization then

dB *)_-(to - 0,
dt I

i = 1,... , N - 1. (8)

This uniquely determines tt, ti ,... , til giving the characterization

tt =0, i = 1,... , N, (9)

where e l = 1; e; = J2" i = 2,... , N - 1; eN = 1.

LEMMA. Let zo,zl,,,,,ZNEIR satisfy .1;+1/.1;<0, i=I,...,N-l. If
0= t; < ti < '" < til = 1 is a minimizing parametrization for the ordinates

zo,Z"""ZN then (8) holds.

Proof If (dOldt)(t;*)"* °at an interior breakpoint, then there is a point
(*t;* with t;*_I<{;<t;*+1 satisfying O({;)=B(t;*)=z;. This is a conse-
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quence of the alternating character of the data and the fact that
(d8jdt)(tn * 0 implies that there is an overshoot in a neighborhood of II'.
Next let lfI(t)ESo(t!f, .... ti*'Ji 't,*+I' ... ,tn satisfy 1fI(t/')=Zj' lei-i.
Ij/(t;) = Zi' Since 8(t) interpolates lzJ~' 0 at the same abscissa, the minimum
properties of Ij/(t) from 18] require that

.1 d21f1' 2 ," d'8'
1(-2) dt~1 (--y) dt.
"0 ,dt, . 0 ,dt

But t;j , t i* ,... , t~ is a minimizing parametrization for the ordinates
zo, Z I' ZV so the reverse inequality must hold as well. Hence. from 181.
8(t) == 1fI(t), tEl 0, I). By comparing the breakpoints of the natural cubic
splines 8 and 1fI, we conclude that if (d8jdt)(tn eI- 0 at an interior parameter
value 1;* then 8(t) is a cubic polynomial in the intervallti*'I.t;*'II. We can
repeat the above argument and enlarge the interval [t(_ I ' tt~ I I to [t I' IHI.
where t. = tt or (d8jdl)(t j ) = 0 and tfl = t~ or (d8jdt)(t H) = O. In any case
we have that 8(t) is a cubic polynomial on It,. tHI which, because of the
alternating data, has at least one interior extreme value and satisfies
(d 28jdt 2 )(t.) =0 or (d8jdt)(tJ=0 and (d 28/dt 2 )(ts) =0 or (d8jdt)(tH)=0.
This requires that 8 == constant on It.1 ' tR I, a contradiction in view of its
interpolation properties.

Uniqueness and the characterization (9) are established as follows.

COROLLARY 1. The unique minimizing parametrization for ordinates
zo. z, .... , Z,y satisjving L1; ~ I jLJ i < O. i = 1.... , N - I is given by (9).

Proof We show (9) is the only parametrization 0 = to < t I < .,. < tv = I
of the ordinates for which the interpolating natural cubic spline ()(t) E
So(to' t l , ... , Ir.J, in addition to having two continuous derivatives and
satisfying

(d 28/dt 2 )(to) = (d28jdt 2)(t,y) = O. 8(t;) = Zi' i = 0, 1,. ... N, also
satisfies (d8jdt)(t;)=0. i= 1•...• N-1. (10)

It then follows from existence and the lemma that this must be the
minimizing parametrization.

At each breakpoint t;, i = 0,... , N, we know the value of 8(t;) and either
(df)jdt)(t;) or (d28jdt2)(tJ This allows the piecewise cubic e(t) to be
reconstructed locally using Hermite cubics. In doing so we find, in general.
that there is a jump in the second derivative at interior breakpoints given by

t!.2
8 (+)_ d

2
() :_)= (3C7+ J LJ;-rl ') _ (_ 3£7 LJ i)

d 2 t, d 2 (t, h 2 h' "t t 'H 1 ' ' ,

i= L .. N-I. (II)
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where hj=l;-l;_l' i= 1,...,N, and ej,i= 1,... ,N, are as defined in (9).
Since 8(t) has continuous second derivatives, the right-hand side of (11)
must vanish. This yields

i = I,..., N - 1. (12)

Under the additional condition I:7= 1 h; = 1, the Eqs. (12) are uniquely
solvable and provide

i= I,... ,N.

This mesh spacing induces the parametrization given in (9).

III. .1;+ 1/.1; Changes Sign

In this general case we first identify all indices I <i 1 < '" < iM _ 1 <N - I
for which .1 ;k+ 1/.1 jk < 0, let i o = 0, i", = N and define

k= I,... ,M. (13)

The edited data Zj, Z; , ... , Z,' are governed by case II (D j /D i < 0,o I M k-tl k

k == I,... , M - I) and has a unique minimizing parametrization

0=(.<(.<···<(.=1.
'0 ,] lM

(14)

This parametrization can be refined in a natural way to generate a complete
parametrization tri, tt, ..., tJ of the original ordinates. To accomplish this let

l/I(t) E soCi; ,tj , ... , t; )o I .11
with lj/(ti ) = Z;k' k = 0,... , M. (15)

For an index j E {O, I,..., N}, define the parameter value t/ as follows. When
j = ik for some k E {O, I,..., M} simply set

(16)

If i k _ 1 <j < i k for some k Ell,..., M} then define tt as the solution in
[tjk_t' i;J of the equation

(17)

The validity of the definitions (16) and (17) follows from two additional
observations.
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(i) If ik _ 1 <j < ik , then Zj is in the open interval spanned by Zi
A

and

Zi
k

and

(ii) 'If(it,) = z;" k = 0, I,... , M, and 'If(t) is strictly monotone (a conse
quence of (8)) on the interval lii

A
_

I
' itJ

Observations (i) and (ii) guarantee that Eq. (17) is uniquely solvable and
that the resulting set of parameter values itt 1> 0 satisfies 0 = tJ < ti < ." <
t~ = I. Additional arguments, given in Corollary 2, establish this as the
unique minimizing parametrization for zo, z 1 , ... , z,v·

COROLLARY 2. The parametrization 0 = t~ < ti < ... < t~ = I dejined
by (16) and (17) is the unique minimizing parametrization for zo' Z 1 ..... z\.

Proof Let 0 = to < {I < .. , < {\' = I be any minimizing parametrization
for Z o. Z 1 .... , z,y and define

(18 )

We will show that {t = tt. i = 0..... N. To begin we let

(J(tn = Zi' i = 0.... , N. (19)

Then by the construction of tt. ti, .... (~ we must have that

(J(t) == 'If(t), t E lO, I j. (20)

where 'If(t)E SO(iio,lil,...,Ii.,) is given by (15). With the subsequence of
indices, ik' k = 0, I,.... M, defined as before, let

lii(l ) = Z', k = 0, ... , M.
'f' lk lk,

The minimum property of i; . i; ,.... f" introduced just prior to Eq. (14) (note
0' 1· .\1

that itk = t;~. k = 0, I,..., M) gives

·1 ( d2 '1f)2 "I ('d 2Iji
')2I -2 dt,;::;; I -2 dt.

'0 ,dt, '0 dt

The minimum property of the Iji(t) from (8) yields

·1 (d 21ji )2.1 (d21J) 2I -d2 dt,;::;; I -d2 dt.
Jo t '0 t

(21 )

(22)

Since {o, {I , ... , 1,\ IS a minimizing parametrization of Z 0' Z I ..... Z.\. we also
have

(23 )
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Inequalities (21 }-(23) and Eq. (20) combine to yield

II (d2{})2 _ fl (d2
(J) 2

d 2 dt - d 2 dt
o tot

and

·1 (d21j/) 2 _.1 (d2lf1) 2I -d2 dt - I -d2 dt.
• 0 t . 0 t

71

(24)

(25)

Equation (24) shows that t6', tt,... , tt is a minimizing parametrization for
zo, Zp"" ZN while Eq. (25), together with case II uniqueness implies
uniqueness in this case. The immediate implication of (25) and case II
uniqueness is that

and

From (20) we obtain

Thus, (24) now gives

Ij/(t) = lfI(t),

Ij/(t) = (J(t),

k=O,l, ... ,M,

t E lO, 1].

t E [0, 1].

(26)

(27)

·1 (d2{})2 _.1 (d21j/) 2J -d2 dt - J -d2 dt.
o tot

(28)

The minimum property of Ij/(t) from [8] states that Eq. (28) can hold only
when

Ij/(t) == [J(t), t E [0, I]. (29)

Equations (26), (27), and (29) imply finally that

i=O,I,... ,N.

The preceding results and discussion also establish several noteworthy
properties of the interpolating natural cubic spline associated with the
minimizing parametrization of scalar ordinates. These are summarized.

COROLLARY 3. Let (J(t) E 8 0(t6', tt, ... , tt) satisfy (J(tt) = Zi' i =
0, 1,... , N, where tlf, tt, ... , tt is the minimizing parametrization for ordinates
Zo,Zp""ZN satisfying (6). Then
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(i) (J(t) interpolates the data (1;*. z) i = a.!,.... N. with no
overshoots.

(ii) (J(t) E SO(ti~' tt;. ...• t~,), where a= io < i , < ... < ill = N is the list
of indices which locate endpoints and interior relative extreme wlues of the
ordinates.

(iii) (J1f(t;J = -3 sgn(DiJ(L:r I f: j vTb
l
!)'. k = 1.2..... M- l. where

and

c= IJ

=/2

sgn(D;) = + I

=-1

k = 1..... M.

if J= lor M.

if J= 2,... , M - 1,

if Di, > a,
if D;, < a.

Consequences of properties (i) and (ii) in the interpolation of scalar data
are the elimination of position overshoots and the reduction of the number of
essential breakpoints in the spline representation. The third property
highlights a somewhat special behavior in the second derivative. The peak
second derivatives. which occur at interior breakpoints, alternate in sign but
remain constant in magnitude. These points are further illustrated by Fig. l.
Here we show the interpolating natural cubic spline, together with its first
and second derivatives, for the data 1(1('.ZJf!Oo given in Tablel.

When higher dimensional data is parametrized by solving (2). the
associated natural cubic spline interpolants of the data components do not
satisfy precisely the properties listed in Corollary 3. However. by comparing
numerical results using the parametrization (5) with results obtained using a
solution of (2) we generally find that:

(i) Position overshoots are reduced.

(ii) The jump in the 3rd derivative is reduced at breakpoints not coin~

ciding with relative extreme values.

(iii) Oscillations in the second derivative tend to be more centered
about zero.

These points will be illustrated by examples in Section 3.
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D

ci

'"
,+----.-------.----~------.-----,

D
Z ci

I

~J
D

~

dz
dt

0.0 o. ;:: 0.1 0.6 0.8 1.0

FIG. I. Cubic spline fit of the data from Table I using minimizing parametrization.

TABLE I

Sample One-Dimensional Data

Zj t*I

o
I
2
3
4
5
6
7
8
9

10

0.0
0.2
0.1
0.4

-0.1
0.0

-0.3
0.2
0.0
0.5
0.4

0.0
0.0654
0.1308
0.2440
0.3902
0.4556
0.5689
0.715 I
0.8076
0.9538
1.0000

Note. The ordinates lzi}!~o and the minimizing parameterization 1tn!~o'
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3. HIGHER DIMENSIONAL PROBLEMS-NuMERICAL EXPERIMENTS

The results and discussion of Section 2 are specific to the case K = 1 and
do not carryover to the higher dimensional problems. We can, however.
treat problem (2) numerically with K> 1 and show that good
parametrizations can be obtained by attempting to minimize G(h) within the
constraint set (3).

Numerical results are obtained using a gradient projection method 191 to
find local minima. We briefly outline this approach. Starting with an initial
parametrization hiD) E B = jh Ihi ~ 0, L;v I hi = I} a sequence hili, h(2).... ,
of iterates in B is generated according to

(30)

In (30) VG = (oG/oh l , ••• , oG/DhN)T and J[n is the projection of R' onto the
subspace {xER"lx·n=O!, where n=(l/IN)(I,l,... ,l)TER'. In par·
ticular,

The parameter AIi - I) is the nonnegative scalar quantity which solves the one·
dimensional problem

where Amax is the largest A for which h Ii I) ~ AJ[n(VG ih'i ,,) has nonnegative
components. This method results in a sequence of parametrizations h I III ,

h(l!,..., for which the corresponding sequence of objective values G(h(i))),
G(h(l)),..., G(h(/)),... , is nonincreasing. Thus if we choose the parametrization
(5) to define the initial guess h (0), the procedure outlined above will always
result in an improved parametrization, according to our criterion, provided

J[nevG IhID)) * O.
Calculations are carried out by expressing G(h) in algebraic form. Using

notation introduced in Section 1, we can write

Here Z l- (Zl Zl Zi)T Q _ (Q .)i~ I. ... ,v I,jell ......\
- 0' 1"'" lv" - i) ,

(Mijki~ \..... /1'-1 with the matrices Q and M defined by
and

(31 )

M=
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Qij= l/h i , j= i-I, Mij= hd6, j = i-I,

= -(I/hi + 1 + I/h i ), j= i, = (hi + hi + 1)/3, j= i,

=1/h i +l' j = i + 1, =hi+ 1 /6, j = i + 1,

=0, otherwise; =0, otherwise.

The representations (31) follows from standard smoothest interpolation
results from natural cubic spline interpolation (see [I D.

The weights ai' I = I,... , K, for geometric applications are choosen
according to

1= I,... , K, (32)

while for problems in trajectory design they are selected according to the
acceleration capabilities of the robot's axes, for example,

a[ = acceleration limit for the Ith axis. (33)

This strategy is adhered to in the accompanying examples and has been
effective in establishing the appropriate hierarchy among the terms of (31).
We note, however, that (32) may not be appropriate in geometric examples
when the data are poorly scaled.

A modification to (31) which simplifies computation and does not appear
to detract from the effectiveness of the procedure can be obtained by
replacing M by the matrix M consisting merely of the diagonal terms of M,
that is, Mij = 0, i *' j, Mii = M ii . This change has the same effect as
replacing the integrals in (1) by rectangular quadratures with mesh spacing h
and then substituting centered difference approximations for the second
derivatives at mesh points. The resulting objective function

(34)

reduces the computational burden by eliminating the necessity of solving a
tridiagonal system when evaluating G.

We consider three examples to il1ustrate the method. The first two are two
dimensional curve fitting problems and the third is a problem in trajectory
design for a six axes robot manipulator.

In the first example we fit a curve to the plane data {(Xi' y;)}f~ 0 given in
Table II. The initial parametrization is normalized accumulated chord length
and is denoted by tfL. The gradient projection method was applied to (2),
first with G defined exactly by (31) to generate tfXi = 0,..., 19 and then with
G defined approximately by (34) to generate the parametrization
ttPi = 0,... ,19. These parametrizations are listed in Table III. The resulting



TABLE II

Sample Dal~ i (Xi,.I'i if ,'"" for Two-Dimensional Curve Fitting Problem

Xi

o
1

2
3
4

5
6

7
8
9

10
II
12
13
14
15
16
17
18
19

0.530
0.470
0.365
0.260
0.205
0.200
0.235
0.340
0.4 75
0.550
0.565
0.550
0.500
0.420
0.310
0.220
0.150
0.105
O.OllO
0.090

TABLE '"

Parametrizalions of the Data from Table II

0.720
0.750
0.760
0.735
0.695
0.660
0.590
0520
0.445
0350
0.300
0.240
0.200
O.llIO
0.180
0.200
0.230
0.275
0.340
0.385

{ ~' I I: .~ ",
Ii

0 0.0 0.0 0.0
1 (),0424 0.0365 0.0363
2 0.1091 0.0961 0.0952
3 0.177] D.1617 D.1616
4 0.2203 D.2192 D'21S7
5 0.2426 D.2538 0.2535
6 D.2921 D.3146 0.3139
7 0.3719 D.3859 0.3847
1\ 0.4645 0.464\ 0.4624
') 0.5460 0.5347 0.5322

10 0.5790 0.5712 0.5697
II O.61S1 0.6214 0.6200
12 0.6586 0.6689 0.6680
13 0.7107 0.7183 07184
}4 0.7802 0.7760 0.7767
15 0.8385 0.8239 0.8255
16 0.8866 0.8678 0.8699
17 0.9268 0.9099 0.9123
18 0.9709 0.9636 0.9646
19 1.0000 l.0000 1.0000

/VUle. ii"})'" is normalized accumulated chord length: Ilr'IJ"" and II"',:"" are the
minimizing parametrizations corresponding to objective functions (3 \) and (34). respective!\.



DATA PARAMETRIZATION 77

plane curves, generated by interpolating the component data with natural
cubic splines and plotting the resulting parametric curves, are nearly iden
tifical for the three parametrizations. The curve corresponding to the
parametrization {t~X} i~ 0 is shown in Fig. 2. Here the open dots locate the
data from Table II. More pronounced differences are evident when we look
at component functions. In Figs. 3-5 we plot the natural cubic splines x(t),
yet) vs t for each of the three parametrizations along with their first and
second derivatives. Comparison of the results in Fig. 3 with those of Fig. 4
or Fig. 5 reveals substantial reduction in the second derivatives for both
component functions, indicative of the expected improvements in
smoothness. The validity of using the approximate objective function (34) in
place of the exact one (31) is also illustrated by comparing Figs. 4 and 5.
Regarding the three comments made at the end of Section 2 we note first
that position overshoots are not a problem in any of the parametrizations of
this data. Smaller jumps in third derivatives are evident, however, and
oscillations in the second derivative are more centered about zero. These
observations are most pronounced when the plot of d 2x/dt 2 vs t from Fig. 3
is compared to the one in Fig. 4.

In our second example we illustrate the conformity issue discussed in (i),
Section l. For this example we consider the data (open dots) and the inter
polating polygon (solid curve) shown in Fig. 6. When these data are
parametrized by (5) and the components interpolated with natural cubic

"'
"

y

-------.-- ~---,--- '---'. ---,--_.----,----,-- ---.---~-,-
0.0 0.1 0,2 0."3 0.1 0.5 0.5 0.7 0.8 0.9

FIG. 2. Parametric cubic spline fit of the two dimensional data from Table II. The curve
shown corresponds to the minimizing parametrization 1t~X I! 9 0 ,
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splines the resulting smooth curve undergoes several oscillations near the
corner (dashed curve, Fig. 6). The amplitude of these oscillations can be
reduced by choosing the parametrization according to the minimization
problem (2). The dotted curve in Fig. 6 is the parametric curve obtained by
parametrizing the data with the minimizing parametrization and inter
polating with the natural cubic splines. The behavior noted here was
observed in a number of examples and appears to be most pronounced when
the data are widely spaced near corners.

Our third example illustrates the method applied to data from a six axes
robot manipulator. A diagram of the manipulator is shown in Fig. 7. As the
manipulator's joints assume the required positions, displayed in Table IV. the
work center. of the machine denoted P in Fig. 7. will pass through particular
points (x, y, z) in space. These points are listed in Table V and provide a
convenient geometric interpretation for these six-dimensional data. The
relative acceleration limits ai' 1= 1,. .. ,6, used in (31) or (34) are
a, = a 2 = I, U J = 2. a 4 = a, = a o= 6. For this example we use only the
approximate objective function defined by (34) to generate the minimizing
parametrization ~t~P\;O o. We compare these results with two standard
parametrizations of the manipulator data. The first of these is normalized
accumulated chord length U; L I;~ (I based on the six-dimensional data and the
second is normalized accumulated chord length 1t~c f;o 0 based on the
associated three-dimensional data, the work center positions. We remark that
the second parametrization is not always valid because distinct manipulator
axis positions do not always give rise to distinct work center positions. The
three parametrizations are given in Table VI. Results obtained after inter
polating the component data with natural cubic splines for each of the three
parametrizations are shown in Figs. 8, 9 and Table VII. Figs. 8a-8e give the
xz projections of the smooth path followed by the work center position of the
manipulator for each of the three parametrizations. Table VII is a list of the

z

\----y

x

FIG. 7. Diagram of the six axes robot manipulator.



TABLE IV

Sample Data from the Six Axes Robot Manipulator Shown in Fig. 7

B)(RAD) Bf(RAD) B!(RAD) Bt(RAD) B;(RAD) B~(RAD)

0 0.0072 0.2117 -1.9315 0.3886 1.5031 -0.2466
1 0.2813 0.2136 -1.8714 -0.4775 1.4120 0.5327
2 0.5135 0.1956 -1.7885 -0.9205 1.2095 1.2631
3 0.5192 0.2650 -1.7594 -0.4811 0.5829 2.4066
4 0.5047 0.2510 -1.7515 -0.3523 0.5021 3.0694
5 0.2879 0.2937 -1.8590 -0.0791 0.4807 3.0074
6 -0.0048 0.3259 -1.9315 -0.2773 0.4353 2.7167
7 -0.3815 0.2901 -1.8290 0.5207 0.4178 3.0394
8 -0.5212 0.2591 -1.7542 0.7683 0.4773 3.5202
9 -0.5302 0.2585 -1.7350 0.6651 0.4766 3.5202

10 -0.6377 0.2992 -1.7422 0.4139 0.2934 2.0606
11 -0.7280 0.3043 -1.6963 0.0202 0.4179 1.5481
12 -0.6924 0.2914 -1.5487 0.3629 1.2309 1.1987
13 -0.7009 0.5287 -1.6963 0.6735 1.2663 1.6121
14 -0.6826 0.7766 -1.8351 0.7470 1.2266 1.5462
15 -0.5877 0.9718 -1.8897 0.8447 0.9359 1.5690
16 -0.4669 1.1200 -1.9080 1.0760 0.7418 I.7231
17 -0.4237 1.1686 -1.8934 0.9913 0.7681 1.6836
18 -0.3810 1.0814 -1.7874 0.3615 0.7976 1.0593
19 -0.3677 0.9236 -1.5804 0.1701 0.7789 0.9752
20 -0.3221 0.8646 -1.4953 -0.2526 0.9583 0.5649

TABLE V

Work Center Positions Corresponding to the Manipulator Data Given in Table IV

x y z
----------------------------

0 0.1228 1.1221 0.1621
1 -0.5478 1.1588 0.1926
2 -0.8349 0.8909 0.3306
3 -l.I100 l.I270 0.5510
4 -1.0043 1.5142 0.5633
5 -0.5581 1.6352 0.5586
6 -0.2105 1.5871 0.5432
7 0.7887 1.5591 0.5460
8 1.1029 1.2715 0.5420
9 l.I287 1.3234 0.5523

10 0.9630 1.5983 0.5130
11 0.9145 1.5002 0.4751
12 l.I 597 1.7580 0.5920
13 1.3047 1.7606 1.0331
14 1.2925 I.7792 1.3120
15 1.1510 1.9127 1.5705
16 0.9987 2.0052 1.8403
17 0.8820 2.0689 1.9480
18 0.6165 2.2152 1.6824
19 0.6288 2.3520 1.6123
20 0.6335 2.4119 1.5021
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TABLE VI

Parametrizations of the Data from Table IV

C[ tt'( I,' I'Ii

0 0.0 0.0 0.0
1 0.0897 00934 00472
2 0.1578 0.1510 0.0996
3 0.2607 0.2219 0.1627
4 0.3115 0.2583 0.2020
5 0.3393 0.3223 0.2604
6 0.3742 0.3710 0.3141
7 0.4448 0.5094 0.3850
8 0.4872 0.5684 0.4374
9 0.4950 0.5765 04527

10 0.6068 0.6213 0.5267
II 0.6565 0.6373 0.5694
12 0.7283 0.6892 0.6392
13 0.7722 0.7535 0.6995
14 0.7949 0.7922 0.7457
15 0.8233 0.8370 0.7865
16 0.8524 0.8818 0.8309
17 0.8612 0.9055 0.8561
18 0.9283 0.9612 0.9176
19 0.9533 0.9826 0.9678
20 1.0000 1.0000 1.0000

NOle. It~L 1;00 is normalized accumulated chord length based on the six dimensional data
from Table IV; It~c 1;0" is normalized accumulated chord length based on the work center
positions in Table V; and 11;'"1;00 is the minimizing parametrization corresponding to the
objective function (34).

TABLE VII

Maximum Acceleration Along Each Cubic Spline Axis Trajectory for the Various
Parametrizations"

j 2 3 4 6

tel 310 280 330 1700 730 890
Iwe 350 380 480 1700 920 2iOO
lAP 120 100 120 470 370 820

I d'(i Ia max -2~ (I) , j = 1,... ,6.
IEIO.II dl
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FIG. 8. Projection xz of the path followed by the work center position for the various
parametrizations: (a) normalized accumulated chord length based on the six-dimensional axis
data; (b) normalized accumulated chord length based on the three-dimensional work center
position data; (c) minimizing parametrization.

maximum second derivatives, max/E[O,I] l(d2gi/dt 2 )(t)l, j = 1,.. ,,6, for each
parametrization and Figs. 9a-c are plots of the natural cubic spline inter
polants of the axis #3 data for each of the three parametrizations. In this
example we do observe some differences among the geometric paths shown
in Figs. 8a-c. The major differences do, as in example 1, occur at the
component function level. Based on the results shown in Table VII, the
minimizing parametrization can reduce significantly component function
accelerations compared to those obtained with the other two
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FIG. 9. Cubic spline fit to axis #3 data for each of the parametnzations.

parametrizations. Reduction by a factor of two or more was obtained on five
of the six axes. In the case of a mechanical manipulator with dynamic
limitations this could mean the difference between being able to complete a
task within a required time period or being forced to redefine or eliminate the
task. A closer inspection of individual axis motions also reveals that. as in
the one-dimensional case, the minimizing parametrization tends to align local
extrema in the data with local extrema in the cubic spline interpolant of the
data. To illustrate this we consider Figs. 9a-9c, where the natural cubic
spline interpolant for axis #3 position is plotted as a function of normalized
time for each of the three parametrizations. In the first two cases, Figs. 9a, b,
overshoots or unwanted oscillations occur in several areas. These are



DATA PARAMETRIZATION 85

eliminated in Fig. 9c, where the results plotted correspond to the minimizing
parametrizations {t~P }~: o.

4. SUMMARY

By basing the choice of parametrization on the certain properties of the
component functions we have introduced a fixed, well-defined objective to be
met in choosing the parametrizations. This is in contrast with somewhat
subjective criteria frequently used to evaluate parametrizations in purely
geometric applications. In addition, the approach addresses certain
requirements and limitations inherent in problems related to trajectory design
for robot manipulators and not normally considered in problems of
geometric design.

The effectiveness of the method in the examples discussed in Section 3 is
an indication of the potential for improvement by making a careful choice of
parametrization. Moreover, the importance of these results is not diminished
by the absence of a uniqueness theorem for the higher dimensional case. The
locally optimal solutions that may result from the application of the gradient
projection method still provide improved parametrizations compared to the
initial choice, excluding, of course, the exceptional case when the initial
parametrization coincides with a relative minimum.
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Note added in proof The author has since learned that the problem considered in this
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